

Section A

1. (a) 100 students

(b)
$$Q_1 = \frac{n}{4} = \frac{800}{4} = 200$$
, $Q_3 = \frac{3n}{4} = 3 \cdot \frac{800}{4} = 600$

$$a = \max(Q_1) = \max(200) = 55$$

$$b = \max(Q_3) = \max(600) = 75$$

Hence, a = 55, b = 75

2. (a) Value after 1 year = 3000×1.046

Value after 2 years =
$$(3000 \times 1.046) \times 1.046 = 3000 \times 1.046^2$$

Value after *n* years = 3000×1.046^n

Thus, value after 7 years = $3000 \times 1.046^7 = 4110.01

(b)
$$5000 = 3000 \times 1.046^x \implies 1.046^x = \frac{5}{3} \implies x \ln(1.046) = \ln(\frac{5}{3})$$

$$\Rightarrow x = \frac{\ln\left(\frac{5}{3}\right)}{\ln(1.046)} = 11.3584...$$

The investment will exceed \$5000 after a minimum of 12 full years

Hence, x = 12

3. (a)
$$\frac{x-4}{2x^2-x-1} = \frac{x-4}{(2x+1)(x-1)} = \frac{A}{2x+1} + \frac{B}{x-1}$$
, A, B $\in \mathbb{R}$

$$\frac{x-4}{(2x+1)(x-1)} = \frac{A(x-1)}{(2x+1)(x-1)} + \frac{B(2x+1)}{(2x+1)(x-1)} \implies x-4 = A(x-1) + B(2x+1)$$

Let x = 1:

$$1-4 = A(1-1) + B(2(1)+1) \implies 3B = -3 \implies B = -1$$

Let x = 0:

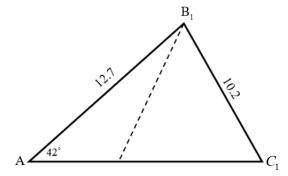
$$0-4=A(0-1)-(2(0)+1) \Rightarrow -4=-A-1 \Rightarrow A=3$$

Hence,
$$\frac{x-4}{2x^2-x-1} = \frac{3}{2x+1} - \frac{1}{x-1}$$
 Q.E.D.

(b)
$$\int \frac{x-4}{2x^2 - x - 1} dx = \int \left(\frac{3}{2x+1} - \frac{1}{x-1}\right) dx = 3\int \frac{1}{2x+1} dx - \int \frac{1}{x-1} dx$$

$$\Rightarrow \int \frac{x-4}{2x^2 - x - 1} dx = \frac{3}{2} \ln|2x+1| - \ln|x-1| + C$$

4.



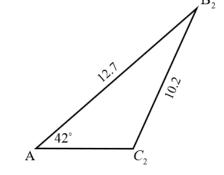
$$\frac{\sin 42^{\circ}}{10.2} = \frac{\sin C_1}{12.7} \implies C_1 = \sin^{-1} \left(\frac{12.7 \sin 42^{\circ}}{10.2} \right)$$

$$C_1 = 56.442^{\circ} \implies B_1 = 180^{\circ} - (56.422^{\circ} + 42^{\circ})$$

$$B_1 = 81.578^{\circ} \implies \frac{\sin 81.578^{\circ}}{AC_1} = \frac{\sin 42^{\circ}}{10.2}$$

$$AC_1 = \frac{10.2 \sin 81.578^{\circ}}{\sin 42^{\circ}} = 15.079 \text{ cm}$$

OR



$$C_2 = 180^{\circ} - 56.422^{\circ} = 123.578^{\circ}$$

$$B_2 = 180^{\circ} - (123.578^{\circ} + 42^{\circ}) = 14.422^{\circ}$$

$$\frac{\sin 14.222^{\circ}}{AC_2} = \frac{\sin 42^{\circ}}{10.2}$$

$$AC_2 = \frac{10.2 \sin 14.422^{\circ}}{\sin 42^{\circ}} = 3.7966 \text{ cm}$$

Hence, the two possible lengths of AC are 15.1 cm and 3.80 cm

5. (a) (i) binomial distribution:
$$n = 500$$
, $p = \frac{3}{5} = 0.6$

$$E(X) = np = 500(0.6) = 300$$

(ii) standard deviation =
$$\sqrt{\text{Var}(X)} = \sqrt{np(1-p)} = \sqrt{500(0.6)(0.4)} = 10.9545... \approx 11.0$$

(b)
$$P(300-10.9545... < X < 300+10.9545...) = P(289.046... < X < 310.954...) \approx 0.662$$

6. Let *X* be the random variable representing time (in minutes) it takes for a student to travel to school

$$P(X < 5) = 0.04 \implies Z \approx -1.75069...$$

$$P(X < 25) = 0.7 \implies Z \approx 0.524401...$$

Using formula for standardized normal variable $Z = \frac{x - \mu}{\sigma}$

$$-1.75069... = \frac{5-\mu}{\sigma} \implies \mu - 1.75069\sigma = 5$$

$$0.524401... = \frac{25 - \mu}{\sigma} \implies \mu + 0.524401\sigma = 25$$

Solving system of linear equations: $\mu \approx 20.4 \,\mathrm{min}$, $\sigma \approx 8.79 \,\mathrm{min}$

7. (a) Using GDC, $\frac{1+x}{(1-4x)^3}$ can be expressed as the sum of two fractions:

$$\frac{1+x}{\left(1-4x\right)^3} = \frac{5}{4\left(1-4x\right)^3} - \frac{1}{4\left(1-4x\right)^2} = \frac{5}{4}\left(1-4x\right)^{-3} - \frac{1}{4}\left(1-4x\right)^{-2}$$

By applying the binomial expansion theorem up to and including the x^3 term:

$$\frac{5}{4}(1-4x)^{-3} \approx \frac{5}{4}(1+12x+96x^2+640x^3)$$

$$\frac{1}{4} (1 - 4x)^{-2} \approx \frac{1}{4} (1 + 8x + 48x^{2} + 256x^{3})$$

$$\Rightarrow \frac{5}{4} (1 - 4x)^{-3} - \frac{1}{4} (1 - 4x)^{-2} \approx \frac{5}{4} (1 + 12x + 96x^{2} + 640x^{3}) - \frac{1}{4} (1 + 8x + 48x^{2} + 256x^{3})$$

$$=1+13x+108x^2+736x^3$$

Hence,
$$\frac{1+x}{(1-4x)^3} \approx 1+13x+108x^2+736x^3$$

(b) For the expansion to be valid, i.e. for it to converge:

$$|4x| < 1 \implies -1 < 4x < 1 \implies -\frac{1}{4} < x < \frac{1}{4}$$

8.
$$v(t) = \int a(t) dt = \int \left(\frac{3}{t} + 2t \sin 2t\right) dt = 3\int \frac{1}{t} dt + 2\int t \sin 2t dt$$

To find $\int t \sin 2t \, dt$, apply integration by parts:

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

Let $u = t \implies du = dt$, and let $dv = \sin 2t dt \implies v = \int \sin 2t dt = -\frac{1}{2}\cos 2t$

$$\int t \sin 2t \, dt = -\frac{t}{2} \cos 2t - \int -\frac{1}{2} \cos 2t \, dt$$
$$= -\frac{t}{2} \cos 2t + \frac{1}{4} \sin 2t + C$$

Substitute back into our original equation, along with $3\int_{t}^{1} dt = 3 \ln t$:

$$\Rightarrow v(t) = 3\ln t - t\cos 2t + \frac{1}{2}\sin 2t + C$$

At t = 1, the particle is at rest, i.e. v(1) = 0, so

$$v(1) = 3\ln 1 - \cos 2(1) + \frac{1}{2}\sin 2(1) + C = 0$$

$$\Rightarrow C = \cos 2 - \frac{1}{2} \sin 2 = -0.8708...$$

At t = 6:

$$v(6) \approx 3 \ln 6 - 6 \cos 2(6) + \frac{1}{2} \sin 2(6) - 0.8708 = -0.8269...$$

Hence,
$$v(6) \approx -0.827 \,\mathrm{m \, s}^{-1}$$

9.
$$px^2 + qx + q = 0 \implies x^2 + \frac{q}{p}x + \frac{q}{p} = 0$$

 α and β are roots of the equation, so

$$x^{2} + \frac{q}{p}x + \frac{q}{p} = (x - \alpha)(x - \beta) = x^{2} - (\alpha + \beta)x + \alpha\beta$$

$$\Rightarrow \alpha + \beta = -\frac{q}{p}, \ \alpha\beta = \frac{q}{p}$$

The equation with roots $\frac{1}{\alpha+1}$ and $\frac{1}{\beta+1}$ can be expressed as

$$\left(x - \frac{1}{\alpha + 1}\right)\left(x - \frac{1}{\beta + 1}\right) = 0 \implies x^2 - \left(\frac{1}{\alpha + 1} + \frac{1}{\beta + 1}\right)x + \left(\frac{1}{\alpha + 1}\right)\left(\frac{1}{\beta + 1}\right) = 0$$

Focusing on the constant term:

$$\frac{1}{\alpha+1} \cdot \frac{1}{\beta+1} = \frac{1}{(\alpha+1)(\beta+1)} = \frac{1}{\alpha\beta+\alpha+\beta+1} = \frac{1}{\frac{q}{p} - \frac{q}{p} + 1} = 1$$

For the *x* term:

$$\frac{1}{\alpha+1} + \frac{1}{\beta+1} = \frac{\beta+1}{(\alpha+1)(\beta+1)} + \frac{\alpha+1}{(\alpha+1)(\beta+1)} = \alpha+\beta+2 = -\frac{q}{p}+2$$

Rewriting the new equation:

$$x^2 - \left(-\frac{q}{p} + 2\right)x + 1 = 0$$

Since we want integer coefficients, and $p, q \in \mathbb{Z}$, multiply through by p:

$$px^2 + (q-2p)x + p = 0$$
 Q.E.D.

Section B

10. (a) Input data into GDC to determine the linear regression equation L_1 :

$$y = 10.7x + 121$$
 (values accurate to 3 significant figures)

- (b) (i) gradient of regression equation is additional cost per box, i.e. unit cost
 - (ii) y-intercept of regression equation is the **fixed costs**, i.e. cost when zero boxes are produced
- (c) y = 10.6555(60) + 120.794 = 760.124

Hence, cost of 60 boxes is approximately \$760

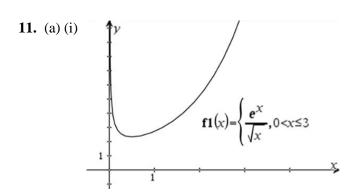
(d) 19.99x > y = 10.6555x + 120.794

$$\Rightarrow$$
 9.3345*x* > 120.794 \Rightarrow *x* > 12.9405...

Hence, the factory must produce at least 13 boxes per day to make a profit

- (e) This would be extrapolation, which is not appropriate
- (f) L_2 : x = 0.0844y 7.88
- (g) x = 0.08837(550) 7.88307 = 40.72043

Hence, approximately 41 boxes are produced when total production cost is \$550



(ii)
$$h(x) = \frac{e^x}{\sqrt{x}} = \frac{e^x}{x^{\frac{1}{2}}} \implies h^{-1}(x) = \frac{x^{\frac{1}{2}}e^x - \frac{1}{2}x^{-\frac{1}{2}}e^x}{\left(x^{\frac{1}{2}}\right)^2} = \frac{e^x\left(\sqrt{x} - \frac{1}{2\sqrt{x}}\right)}{x} = \frac{e^x\left(\frac{2x - 1}{2\sqrt{x}}\right)}{x} = e^x\left(\frac{2x - 1}{2x\sqrt{x}}\right)$$

- (iii) gradient of normal to curve is $-\frac{2x\sqrt{x}}{e^x(2x-1)} = \frac{2x\sqrt{x}}{e^x(1-2x)}$
- (b) (i) gradient of (PQ) is $\frac{y-0}{x-1} = \frac{\frac{e^x}{\sqrt{x}} 0}{x-1} = \frac{e^x}{\sqrt{x}} \cdot \frac{1}{x-1} = \frac{e^x}{\sqrt{x}(x-1)}$
- (ii) Equating the two expressions for gradient of normal to the curve gives

$$\frac{e^x}{\sqrt{x}(x-1)} = \frac{2x\sqrt{x}}{e^x(1-2x)} \implies x \approx 0.545428... \text{ this is the } x\text{-coordinate of P}$$

y-coordinate of P is
$$h(0.545428...) = \frac{e^x}{\sqrt{0.545428...}} \approx 2.33619...$$

minimum distance from Q to graph of h is length of PQ

hence, minimum distance =
$$\sqrt{(0.545428...-1)^2 + (2.33619...-0)^2} \approx 2.380001...$$

minimum distance from Q to graph of h is approximately 2.38

(c)
$$g(x) = \frac{e^x}{c\sqrt{x}} = \frac{1}{c} \cdot h(x) \implies g'(x) = \frac{1}{c} \cdot h'(x) = \frac{e^x}{c} \left(\frac{2x-1}{2x\sqrt{x}}\right)$$

The point on the graph of g nearest to point R on the x-axis is the point on g that has a horizontal tangent (parallel to x-axis); i.e. g'(x) = 0. This point on g and point R have the same x-coordinate.

$$g'(x) = \frac{e^x}{c} \left(\frac{2x-1}{2x\sqrt{x}} \right) = 0 \implies 2x-1 = 0 \implies x = \frac{1}{2}$$
; Thus, point R is located at $\left(\frac{1}{2}, 0 \right)$

- 12. (a) k will always be positive. The temperature of the egg is decreasing which means that $\frac{dT}{dt} < 0$; and since T A > 0 then it must follow that -k < 0; hence, k > 0
 - (b) (i) $\frac{dT}{dt} = -k \left(T 18 \right) \implies \frac{1}{T 18} dT = -k dt \implies \int \frac{1}{T 18} dT = -k \int dt$ $\ln \left(T 18 \right) = -kt + C_1 \implies e^{\ln(T 18)} = e^{-kt + C_1} \implies T 18 = e^{-kt} e^{C_1} \quad \text{let } C = e^{C_1}$ $T(t) = Ce^{-kt} + 18 \text{; given } T(0) = 98 \text{ then } T(0) = Ce^0 + 18 = 98 \implies C = 80$ Thus, $T(t) = 80e^{-kt} + 18$ *Q.E.D.*
 - (ii) Given T(5) = 38, find k: $38 = 80e^{-k(5)} + 18 \implies 80e^{-5k} = 20 \implies e^{-5k} = 0.25$ $\ln(e^{-5k}) = \ln(0.25) \implies -5k = \ln(0.25) \implies k = \frac{\ln(0.25)}{-5} \approx 0.277259...$ $20 = 80e^{-0.277t} + 18 \implies e^{-0.277t} = 0.025 \implies \ln(e^{-0.277t}) = \ln(0.025)$ $-0.277t = \ln(0.025) \implies t = \frac{\ln(0.025)}{-0.277259...} \approx 13.3048...$

Thus, it takes approximately 13.3 minutes for the egg to cool to 20 °C.

- (c) (i) substituting, gives $\frac{dT}{dt} = -0.25 (T 18e^{-0.2t})$; then $\frac{dT}{dt} = -0.25T + 4.5e^{-0.2t}$ **Q.E.D.**
- (ii) this is a first order linear differential equation: $\frac{dT}{dt} + 0.25T = 4.5e^{-0.2t}$

integrating factor is $e^{\int 0.25 dt} = e^{0.25t}$; multiply both sides of diff eqn by integrating factor – and applying product rule for differentiation 'backwards' on left side, gives

$$e^{0.25t} \left(\frac{dT}{dt} + 0.25T \right) = e^{0.25t} \left(4.5e^{-0.2t} \right) \implies \frac{d}{dt} \left(e^{0.25t}T \right) = 4.5e^{0.05t}$$

integrate both sides w.r.t. t: $\int \left[\frac{d}{dt} \left(e^{0.25t} T \right) \right] dt = 4.5 \int e^{0.05t} dt \implies e^{0.25t} T = 4.5 \left(20e^{0.05t} \right) + C$

$$\frac{e^{0.25t}T}{e^{0.25t}} = \frac{90e^{0.05t} + C}{e^{0.25t}} \implies T(t) = 90e^{-0.2t} + Ce^{-0.25t}$$

$$T(0) = 98: 98 = 90e^{0} + Ce^{0} \implies C = 8$$

Thus,
$$T(t) = 90e^{-0.2t} + 8e^{-0.25t}$$

(iii) $90e^{-0.2t} + 8e^{-0.25t} = 20 \implies t \approx 7.81242...$

Thus, it takes approximately 7.81 minutes for the egg to cool to 20 °C.